## GUPTA MECHANICAL

IN THIS WEBSITE I CAN TELL ALL ABOUT TECH. TIPS AND TRICKS APP REVIEWS AND UNBOXINGS ALSO TECH. NEWS .............

# [Solution] Red Blue Flowers CodeChef Solution

## Problem

Chef has a garden containing $N$ cells. The $i$-th cell has $R_i$ red flowers and $B_i$ blue flowers. Chef can collect only one type of flowers (either red or blue) from each cell.

Let $X$ denote the total number of red flowers Chef collects and $Y$ denote the total number of blue flowers Chef collects. Chef wants to maximize the value of $\mathrm{min}(X, Y)$. Can you help Chef?

### Input Format

• The first line contains a single integer $T$ — the number of test cases. Then the test cases follow.
• The first line of each test case contains an integer $N$ — the number of cells in Chef's garden.
• The second line of each test case contains $N$ space-separated integers $R_1, R_2, \dots, R_N$ denoting the number of red flowers in each cell.
• The third line of each test case contains $N$ space-separated integers $B_1, B_2, \dots, B_N$ denoting the number of blue flowers in each cell.

### Output Format

For each test case, output the maximum value of $\mathrm{min}(X, Y)$.

### Explanation:

Test case 1: If Chef collects $1$ red flower from the cell, Chef will have a total of $1$ red flower $(X = 1)$ and $0$ blue flowers $(Y = 0)$.
If Chef collects the $101$ blue flowers from the cell, Chef will have a total of $0$ red flowers $(X = 0)$ and $101$ blue flowers $(Y = 101)$.

Solution Click Below:-  👉
👇👇👇👇👇

Either way, $\mathrm{min}(X, Y) = 0$, the answer is $0$.

Test case 2: Chef collects the $199$ blue flowers from the first cell and the $200$ red flowers from the second cell, so $\mathrm{min}(X, Y) = 199$, which is maximum.

Test case 3: Chef collects blue cells from the first three cells $(Y = 3 + 1 + 3)$ and red flowers from the fourth cell $(X = 10)$, so $\mathrm{min}(X, Y) = 7$, which is maximum.