## GUPTA MECHANICAL

IN THIS WEBSITE I CAN TELL ALL ABOUT TECH. TIPS AND TRICKS APP REVIEWS AND UNBOXINGS ALSO TECH. NEWS .............

# [Solution] Maximum Subarray CodeChef Solution

## Problem

Given two arrays $A$ and $B$ of sizes $N$ and $M$ respectively. You can apply the following operation until the array $B$ is non-empty:

• Choose either the first or the last element of array $B$.
• Insert the chosen element to either the front or the back of array $A$.
• Delete the chosen element from array $B$.

For example, let $A = [9, 7]$ and $B = [1, 3, 2]$. In one operation, we can choose either $X = 1$ or $X = 2$ (first or last element of array $B$). We can insert $X$ in array $A$ and make it either $A = [X, 9, 7]$ or $A = [9, 7, X]$. The chosen $X$ is deleted from array $B$. Thus, it will become either $B = [3, 2]$ (when chosen $X$ is $1$) or $B = [1, 3]$ (when chosen $X$ is $2$).

Find the maximum sum of any subarray of the array $A$ that you can achieve after performing exactly $M$ operations.

Note: A subarray of an array is formed by deleting some (possibly zero) elements from the beginning of the array and some (possible zero) elements from the end of the array. A subarray can be empty as well.

### Input Format

• The first line of input will contain a single integer $T$, denoting the number of test cases.
• Each test case consists of $4$ lines of input.
• The first line of each test contains a single integer $N$, the size of array $A$.
• The next line contains $N$ space-separated integers, denoting elements of array $A$.
• The third line of each test contains a single integer $M$, the size of array $B$.
• The next line contains $M$ space-separated integers, denoting elements of array $B$.

### Output Format

For each test case, output on a new line the maximum sum of any subarray of the array $A$ that you can achieve after performing exactly $M$ operations.

Solution Click Below:-  👉
👇👇👇👇👇

### Explanation:

Test case $1$:

• Operation $1$: Add the first element of array $B$ to the back of array $A$. Thus, $A = [3, 26, -79, 72, 23, 66]$ and $B = $.
• Operation $2$: Add the first element of array $B$ to the back of array $A$. Thus, $A = [3, 26, -79, 72, 23, 66, 44]$ and $B = []$.

The, maximum sum subarray of array $A$ is $[72, 23, 66, 44]$ having sum $72+23+66+44=205$.

Test case $2$:

• Operation $1$: Add the first element of array $B$ to the front of array $A$. Thus, $A = [-97, 81]$ and $B = []$.

The, maximum sum subarray of array $A$ is $$ having sum $81$.

Test case $3$:

• Operation $1$: Add the last element of array $B$ to the back of array $A$. Thus, $A = [10, -5, 14, -20, 4, -2]$ and $B = [-10, 5]$.
• Operation $2$: Add the last element of array $B$ to the front of array $A$. Thus, $A = [5, 10, -5, 14, -20, 4, -2]$ and $B = [-10]$.
• Operation $3$: Add the first element of array $B$ to the front of array $A$. Thus, $A = [-10, 5, 10, -5, 14, -20, 4, -2]$ and $B = []$.

The, maximum sum subarray of array $A$ is $[5, 10, -5, 14]$ having sum $5+10-5+14 = 24$.