## GUPTA MECHANICAL

IN THIS WEBSITE I CAN TELL ALL ABOUT TECH. TIPS AND TRICKS APP REVIEWS AND UNBOXINGS ALSO TECH. NEWS .............

# [Solution] Mean and Median CodeChef Solution

## Problem

Chef has two numbers $X$ and $Y$. Chef wants to find three integers $A, B,$ and $C$ such that:

• $-1000 \le A, B, C \le 1000$
• $mean([A, B, C]) = X$
• $median([A, B, C]) = Y$

Can you help Chef find such three integers?

As a reminder, $mean([P, Q, R]) = \frac{P + Q + R}{3}$ and $median([P, Q, R])$ is the element at the $2^{nd}$ (middle) position after we sort $[P, Q, R]$ in non-decreasing order.

### Input Format

• The first line contains a single integer $T$ — the number of test cases. Then the test cases follow.
• The first and only line of each test case contains two space-separated integers $X$ and $Y$ — the required mean and median of the three integers.

### Output Format

For each test case, output three integers $A, B, C$ which satisfy the given conditions.

Solution Click Below:-  👉
👇👇👇👇👇

It is guaranteed that an answer always exists under the given constraints.

If multiple answers exist, output any.

### Explanation:

Test Case 1: $mean([5, 5, 5]) = \frac{5 + 5 + 5}{3} = 5$$median([5, 5, 5]) = 5$.

Test Case 2: $mean([0, 100, 101]) = \frac{0 + 100 + 101}{3} = \frac{201}{3} = 67$$median([0, 100, 101]) = 100$.

Test Case 3: $mean([0, 5, 7]) = \frac{0 + 5 + 7}{3} = 4$$median([0, 5, 7]) = 5$.