GUPTA MECHANICAL

IN THIS WEBSITE I CAN TELL ALL ABOUT TECH. TIPS AND TRICKS APP REVIEWS AND UNBOXINGS ALSO TECH. NEWS .............

Wednesday 14 September 2022

[Solution] K-Subarrays CodeChef Solution



Problem

You are given an array A of N positive integers. Let G be the gcd of all the numbers in the array A.

You have to find if there exist K non-emptynon-intersecting subarrays of A for which the arithmetic mean of the gcd of those K subarrays equals G.

Formally, let g_1, g_2, \ldots, g_K be the gcd of those K chosen subarrays, then, \frac{(g_1 + g_2 + .... + g_K)}{K} = G should follow.

If there exist K such subarrays, output YES, otherwise output NO.

Note: Two subarrays are non-intersecting if there exists no index i, such that, A_i is present in both the subarrays.

Input Format

  • The first line of input will contain a single integer T, denoting the number of test cases.
  • Each test case consists of multiple lines of input.
    • The first line of each test case contains two space-separated integers — the number of integers in the array A and the integer K, respectively.
    • The next line contains N space-separated positive integers A_1, A_2, \ldots, A_N, the elements of the array A.

Output Format

For each test case, if there exist K such subarrays, output YES, otherwise output NO.

You may print each character of the string in uppercase or lowercase (for example, the strings YESyEsyes,

Solution Click Below:-  👉CLICK HERE👈
👇👇👇👇👇

 and yeS will all be treated as identical).

Explanation:

Test case 1: It is impossible to find 4 non-empty, non-intersecting subarrays which satisfy the given condition.

Test case 2: There is only one element in the array. Here, G = 1 and, for the subarray [1]g = 1. Thus, it is possible to satisfy the conditions.

Test case 3: Here, G = gcd(1,2,3,4,5) = 1. We can choose 3 non-empty, non-intersecting subarrays \{[1], [2,3], [4,5]\} where gcd(1) = 1gcd(2,3) = 1, and gcd(4,5) = 1. Thus, the arithmetic mean = \frac{(1 + 1 + 1)}{3} = 1. Hence, we can have 3 such subarrays.

Test case 4: It is impossible to find 3 non-empty, non-intersecting subarrays which satisfy the given condition.

No comments:

Post a Comment