## GUPTA MECHANICAL

IN THIS WEBSITE I CAN TELL ALL ABOUT TECH. TIPS AND TRICKS APP REVIEWS AND UNBOXINGS ALSO TECH. NEWS .............

# [Solution] Distinct Numbers CodeChef Solution

## Problem

You are given two positive integers $N$ and $K$. You have to perform the following operation exactly $K$ times:

• For the current value of $N$, choose any positive integer $D$ such that $D$ is a divisor of $N$ and multiply $D$ with $N$.
Formally, $N := (N * D)$ such that $D$ is a divisor of current value of $N$.

Print the sum of all distinct values of the final $N$ you can receive after performing the above operation exactly $K$ times. Since the answer can be large, print it modulo $10^9 + 7$.

### Input Format

• The first line of input will contain a single integer $T$, denoting the number of test cases.
• Each test case contains two space-separated integers $N$ and $K$ respectively, the initial number and the number of operations.

### Output Format

For each test case, output on a new line the sum of all distinct values of the final $N$ you can receive after performing the given operation exactly $K$ times. Since the answer can be large, print it modulo $10^9 + 7$.

### Explanation:

Test case $1$: $1$ is the only divisor of $1$. So, the value remains unchanged after the operations. Thus, there is only one distinct value after $5$ operations, which is $1$.

Solution Click Below:-  👉
👇👇👇👇👇

Test case $2$:

• Operation $1$: Initially, $N = 2$ has divisors $1$ and $2$. Thus, after $1$ operation, $N$ can be either $2\cdot 1 = 2$ or $2\cdot 2 = 4$.
• Operation $2$: If $N=2$, the divisors are $1$ and $2$ which can lead to the final values as $2\cdot 1 = 2$ and $2\cdot 2 = 4$. If $N = 4$, the divisors are $1, 2,$ and $4$. Thus, the final values can be $4\cdot 1 = 4, 4\cdot 2 = 8,$ and $4\cdot 4 = 16$ .

The distinct values that can be obtained after applying the operation $2$ times on $N = 2$ are $\{2, 4, 8, 16\}$, and $2 + 4 + 8 + 16 = 30$.

Test case $3$: The numbers $10 = 10 \cdot 1$$20 = 10 \cdot 2$$50 = 10 \cdot 5$ and $100 = 10 \cdot 10$ can be obtained after applying the operation $1$ time on $N=10$, and $10 + 20 + 50 + 100 = 180$.