## GUPTA MECHANICAL

IN THIS WEBSITE I CAN TELL ALL ABOUT TECH. TIPS AND TRICKS APP REVIEWS AND UNBOXINGS ALSO TECH. NEWS .............

# [Solution] Copy and Paste CodeChef Solution

## Problem

Chef has binary string $A$ of length $N$. He constructs a new binary string $B$ by concatenating $M$ copies of $A$ together. For example, if $A = \texttt{"10010"}$$M = 3$, then $B = \texttt{"100101001010010"}$.

Chef calls an index $i$ $(1 \le i \le N \cdot M)$ good if:

• $pref_i = suf_{i + 1}$.

Here, $pref_j = B_1 + B_2 + \ldots + B_j$ and $suf_j = B_{j} + B_{j + 1} + \ldots + B_{N \cdot M}$ (Note that $suf_{N \cdot M + 1} = 0$ by definition)

Chef wants to find the number of good indices in $B$. Can you help him do so?

### Input Format

• The first line contains a single integer $T$ — the number of test cases. Then the test cases follow.

Solution Click Below:-  👉
👇👇👇👇👇

• The first line of each test case contains two space-separated integers $N$ and $M$ — the length of the binary string $A$ and the number of times $A$ is concatenated to form \$
• The second line of each test case contains a binary string $A$ of length $N$ containing $0$s and $1$s only.

### Output Format

For each test case, output the number of good indices in $B$.

### Explanation:

Test case $1$: $B = \texttt{"0000"}$. In this string, all the indices are good.

Test case $2$: $B = \texttt{"11111111"}$. In this string, only $i = 4$ is good.

Test case $3$: $B = \texttt{"101101101"}$. In this string, $i = 4$ and $i = 5$ are good.