## GUPTA MECHANICAL

IN THIS WEBSITE I CAN TELL ALL ABOUT TECH. TIPS AND TRICKS APP REVIEWS AND UNBOXINGS ALSO TECH. NEWS .............

# [Solution] Perfect Permutation Codeforces Solution

A. Perfect Permutation
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

You are given a positive integer $n$.

The weight of a permutation ${p}_{1},{p}_{2},\dots ,{p}_{n}$ is the number of indices $1\le i\le n$ such that $i$ divides ${p}_{i}$. Find a permutation ${p}_{1},{p}_{2},\dots ,{p}_{n}$ with the minimum possible weight (among all permutations of length $n$).

A permutation is an array consisting of $n$ distinct integers from $1$ to $n$ in arbitrary order. For example, $\left[2,3,1,5,4\right]$ is a permutation, but $\left[1,2,2\right]$ is not a permutation ($2$ appears twice in the array) and $\left[1,3,4\right]$ is also not a permutation ($n=3$ but there is $4$ in the array).

Input

Solution Click Below:-  👉
👇👇👇👇👇

Each test contains multiple test cases. The first line contains the number of test cases $t$ ($1\le t\le {10}^{4}$). The description of the test cases follows.

The only line of each test case contains a single integer $n$ ($1\le n\le {10}^{5}$) — the length of permutation.

It is guaranteed that the sum of $n$ over all test cases does not exceed ${10}^{5}$.

Output

For each test case, print a line containing $n$ integers ${p}_{1},{p}_{2},\dots ,{p}_{n}$ so that the permutation $p$ has the minimum possible weight.

If there are several possible answers, you can print any of them.