## GUPTA MECHANICAL

IN THIS WEBSITE I CAN TELL ALL ABOUT TECH. TIPS AND TRICKS APP REVIEWS AND UNBOXINGS ALSO TECH. NEWS .............

## [Solution] Equal Reversal Codeforces Solution | Codeforces Problem Solution 2022

F. Equal Reversal
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

There is an array $a$ of length $n$. You may perform the following operation on it:

• Choose two indices $l$ and $r$ where $1\le l\le r\le n$ and ${a}_{l}={a}_{r}$. Then, reverse the subsegment from the $l$-th to the $r$-th element, i. e. set $\left[{a}_{l},{a}_{l+1},\dots ,{a}_{r-1},{a}_{r}\right]$ to $\left[{a}_{r},{a}_{r-1},\dots ,{a}_{l+1},{a}_{l}\right]$.

You are also given another array $b$ of length $n$ which is a permutation of $a$. Find a sequence of at most ${n}^{2}$ operations that transforms array $a$ into $b$, or report that no such sequence exists.

Input

Each test contains multiple test cases. The first line contains a single integer $t$ ($1\le t\le 100$) — the number of test cases. The description of the test cases follows.

The first line of each test case contains an integer $n$ ($1\le n\le 500$) — the length of array $a$ and $b$.

The second line of each test case contains $n$ integers ${a}_{1},{a}_{2},\dots ,{a}_{n}$ ($1\le {a}_{i}\le n$) — elements of the array $a$.

Solution Click Below:-  👉
👇👇👇👇👇

The third line of each test case contains $n$ integers ${b}_{1},{b}_{2},\dots ,{b}_{n}$ ($1\le {b}_{i}\le n$) — elements of the array $b$.

It is guaranteed that $b$ is a permutation of $a$.

It is guaranteed that the sum of $n$ over all test cases does not exceed $500$.

Output

For each test case, output "NO" (without quotes) if it is impossible to turn $a$ into $b$ using at

most ${n}^{2}$ operations.

Otherwise, output "YES" (without quotes). Then output an integer $k$ ($0\le k\le {n}^{2}$) denoting the number of operations you will perform. Note that you don't have to minimize the number of operations.

Afterwards, output $k$ lines. The $i$-th line should contain two integers ${l}_{i}$ and ${r}_{i}$ ($1\le {l}_{i}\le {r}_{i}\le n$) — the left and right indices for the $i$-th operation.

You can output "YES" and "NO" in any case (for example, strings "yEs", "yes" and "Yes" will be recognized as a positive response).

If there are multiple possible sequences of operations, you may output any of them.